LOYAL EDUCATION

MATHEMATICS

Result Oriented

(CLASS - 10)

CO-ORDINATE GEOMETRY

Introduction

* <u>Distance Formula</u>: Formula to find the distance between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is given by

B(x₂, y₂) is given by
$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \text{ Or } AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Note:

* If one of the point being origin i.e., A(0, 0) and B(x, y) then the formula to find the distance between them is given by

$$AB = \sqrt{x^2 + y^2}$$

* If A (0, y) and B(x, 0) (or) A(x, 0) and B(0, y) then the formula to find the distance between them is given by

$$AB = \sqrt{x^2 + y^2}$$

* Section Formula => If 'p' divides the line segment which is formed by joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ internally in the ratio $m_1:m_2$, then the formula to find the co-ordinates of 'p' is given by P:-

$$P = \left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right]$$

Note:

* If 'p' divides the line segment which is formed by joining the points A (x_1, y_1) and B (x_2, y_2) externally in the ratio m_1 : m_2 , then the formula to find the co-ordinates of 'p' is given by

$$P = \left[\frac{m_1 x_2 - m_2 x_1}{m_1 - m_2} , \frac{m_1 y_2 - m_2 y_1}{m_1 - m_2} \right]$$

* If 'p' divides the line segment which is formed by joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ in the ratio 1:1, i.e., if 'p' is the mid-point of AB, then the formula to find the co-ordinates of 'p' is given by

$$P = \left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right]$$

- * The general form of any point on x-axis is given by (x, 0)
- * The general form of any point on y-axis is given by (0, y)

LOYAL EDUCATION

MATHEMATICS

Result Oriented

(CLASS - 10)

* If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the three vertices of a Δ ABC, then the formula to find its area is given by

$$\Delta = 1/2 \mid x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \mid$$

Note:

* If A(0,0), B(x, y) and C(x₂, y₂) are the three vertices of a Δ ABC then the formula to find its area is given by

$$\Delta = 1/2 | x_1y_2 - x_2y_1 |$$

* If A(0,0), B(x,0) and C(0,y) are the three vertices of a Δ ABC then the formula to find its area is given by

$$\Delta = 1/2 |xy|$$

* * * * * * * * * * * * * * * * * *

LOYALEducation

https://loyaleducation.org